高三2025届全国高考分科模拟调研卷·(一)1数学试题,目前2024届百校联盟答案网已经汇总了高三2025届全国高考分科模拟调研卷·(一)1数学试题的各科答案和试卷,获取更多{{papers_name}}答案解析,请在关注本站。
本文从以下几个角度介绍。
1、2024年全国高考调研模拟试卷二数学
2、2024高考数学答案
3、2024全国高考调研模拟卷二
4、2024年全国二卷理科数学
5、2024高考数学试题
6、2024年全国高考调研模拟试卷(二)理科综合
7、2024年全国高考调研模拟试卷(五)理科综合
8、2024年全国高考调研模拟卷二理科数学答案
9、2024年全国高考调研模拟试卷二理科综合
10、2024年全国高考调研模拟试卷(五)
1数学试题)
∴.S15=5(a,+a1s)=15a4>0,又a1+ag=2ag,且a,<0,2.S1717(a,十an=17a,<0,故B中的结论正确,D中的整理,得51d2-d-50=0,2结论错误,解得d=一职或d=1507.1013解析:S3=3a1+3d,∴.3a1+3d=a1+4d,即d=2,d>1,∴此时无解am=a1+(m-1)×2=2m-1=2025,.m=1013.8.2n十1(答案不唯一)解析:设{an}的公差为d,由题意得,综上可知,d-副a2
0).因为a1=1,差为号-子,首项为6=0,=1,所以新数列的道项公式为a3=2a2十3,所以g2=2g十3,解得g=3(负值舍去).则其前3项的和S,=1+3+32=13.故选C.么.-1+-10=+成6=×4+-要2.B法一因为am+n=ama恒成立,所以当m=1时也成421立,即am+1=a1an,又a1=2,所以am+1=2an,所以数列{an}13.解:(1)3a2=3a1十a3,3(a2-a1)=a3,是以2为首项,2为公比的等比数列,所以an=2”,则a4=.3d=a1+2d,∴a1=d,则an=nd(d>1),24=16,故选B.6,=n+1法二am+n=aman,a1=2,则a4=a2a2=a1a1a1a1=a=2d=16,故选B.9S;=a+a:+a;=6d,T;=b1+b:+b3=d3.B当n=1时,a1=S1=3+r;当n≥2时,an=Sn-S-1=32m-1-32m-3=32m-3(32-1)=8·32m-3=8·32m-2·31=.6d+d9=21.整理,得2d2-7d+3=0,号·g,所以3+,=号期=-台成走B8即(2d-1d-3)=0,解得d=3或d=2(含去).4.C因为am+1=2S。+2,所以当n≥2时,a.=2S。-1十2,两式∴.am=3n,n∈N相减得an+1一an=2am,即a+1=3an,所以数列{an}是公比(2)若{b}为等差数列,Q“23的等比数列,当n=1时,a,=2S,+2=2a,十2则61+6,=26,即2+1262·al a3又a2=3a1,所以3a1=2a1十2,解得a1=2,所以a4=a1g3=整理,得a-3a1d+2d2=0.2×33=54,故选C.解得a1=d或a1=2d.5.AD对于A,由8.0中=g2(n≥2)知数列(a,a+1}是公比为当a,=d时,a.=nd,6,=n+n-n+1an-lannddg2的等比数列;对于B,当q=一1时,数列{am十am+1}的项中s。-T=2d+9d)男(号+罗)=9.有0,不是等比数列;对于C,当q=1时,数列{a,一am+1}的项1整理,得50d-d-51=0,+==1解得d-弱或d=-1含去).中有0,不是等比数列:对于D.“士=。g,所以数列a当,=2d时,a,=(n+1)d,b.=(m+Da-in'+nn仁}是公比为。的等比数列la.高中总复习·数学587参考答案与详解
本文标签: